Origine évolutive de la complexité des systèmes biologiques – une étude par évolution expérimentale in silico
17/05/2021, 11:00, en ligne via Teams
L’origine évolutive de la complexité des systèmes biologiques interroge les sciences du vivant depuis de nombreuses années. Dans cette thèse nous avons utilisé la plateforme d’évolution expérimentale in silico « Aevol » pour tester l’existence d’un « cliquet de complexité », c’est à dire d’un processus historique augmentant la complexité même dans des conditions où celle-ci n’est pas requise. Pour ce faire nous avons fait évoluer des populations d’organismes numériques dans des conditions environnementales telles que des organismes simples puissent se reproduire et prospérer. Malgré cela nous observons que dans une large majorité des simulations la complexité des organismes augmente continument. L’étude a posteriori des simulations montre pourtant que ces organismes complexes sont beaucoup moins adaptés que les organismes simples et qu’ils n’ont aucun avantage de robustesse ou d’évolvabilité. Cela exclut la sélection de l’ensemble des explications possibles pour l’évolution de la complexité. Par ailleurs, des expériences complémentaires ont montré que la sélection est néanmoins nécessaire pour que la complexité évolue, excluant également les effets non sélectifs. En analysant le devenir à long terme des organismes complexes, nous avons enfin montré que les ces organismes ne reviennent presque jamais à la simplicité malgré le bénéfice potentiel en termes de fitness. Cela suggère l’existence d’un cliquet de complexité alimenté par une épistasie négative : les mutations conduisant à des solutions simples, favorables en début de simulation, deviennent délétères après la fixation d’autres mutations. Nos résultats suggèrent également que ce cliquet de complexité serait plus puissant que la sélection, mais qu’il peut être inversé par la robustesse en raison des contraintes qu’elle impose sur la capacité de codage du génome.