25/01/21 – Séminaire : Claire Boyer (Sorbonne Université)


Sampling rates for l1-synthesis ou « Combien de projections sous-gaussiennes doit-on faire pour reconstruire un objet parcimonieux dans un dictionnaire redondant ? »

25/01/2021, 11:00, en ligne via Teams

This work investigates the problem of signal recovery from undersampled noisy sub-Gaussian measurements under the assumption of a synthesis-based sparsity model. Solving the l1-synthesis basis pursuit allows to simultaneously estimate a coefficient representation as well as the sought-for signal. However, due to linear dependencies within redundant dictionary atoms it might be impossible to identify a specific representation vector, although the actual signal is still successfully recovered. We study both estimation problems from a non-uniform, signal-dependent perspective. By utilizing results from linear inverse problems and convex geometry, we identify the sampling rate describing the phase transition of both formulations, and propose a « tight » estimated upper-bound.
This is a joint work with Maximilian März (TU Berlin), Jonas Kahn and Pierre Weiss (CNRS, Toulouse).

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *