15/09/25 – Séminaire d’Ambroise Ordonna, Huawei & INRIA Paris #NeuralNetworks

Séminaire/congrès/conférence

Nous espérons que votre été s’est bien passé et tenons à vous informer que le prochain séminaire aura lieu le lundi 15 septembre à 10h30 en salle K071. Nous aurons le plaisir de recevoir Ambroise Ordonnat étudiant en thèse chez Huawei & INRIA Paris

Title: MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts
Abstract: Leveraging the models’ outputs, specifically the logits, is a common approach to estimating the test accuracy of a pre-trained neural network on out-of-distribution (OOD) samples without requiring access to the corresponding ground truth labels. Despite their ease of implementation and computational efficiency, current logit-based methods are vulnerable to overconfidence issues, leading to prediction bias, especially under the natural shift. In this work, we first study the relationship between logits and generalization performance from the view of low-density separation assumption. Our findings motivate our proposed method MaNo which (1) applies a data-dependent normalization on the logits to reduce prediction bias, and (2) takes the  norm of the matrix of normalized logits as the estimation score. Our theoretical analysis highlights the connection between the provided score and the model’s uncertainty. We conduct an extensive empirical study on common unsupervised accuracy estimation benchmarks and demonstrate that MaNo achieves state-of-the-art performance across various architectures in the presence of synthetic, natural, or subpopulation shifts. The code is available at https://github.com/Renchunzi-Xie/MaNo.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *